

1.1 开户许可证

1.2 IS09001 质量管理体系认证证书

ISO9001

质量管理体系认证证书

证书编号: 20220Q20851R0S

兹证明

浙江喜鹊密封件有限公司

连一社会信用代码: 91330324MA2ATGAQ8W

质量管理体系符合:

GB/T19001-2016 idt ISO9001:2015 标准

证书覆盖范围:

石墨模压填料密封件的生产和销售

注册地址/审核地址:浙江省温州市永嘉县城北街道浦一村谢宅巷9号(东至西第一局)

本次派发日期: 2020年09月29日 证书有效期至: 2023年09月28日 背次派发日期: 2020年09月29日

批訊必須按照規定每年接受查申,并配合查申合格通知书。注册的有效性才能抵信 此以证证书的有效状态信息可知描左方二组码查的 也可是贴本认证机构网站中4年。2017年提构 也可是贴本认证机构网站中4年。2017年提构 也可是贴中国国家认证认可查据管理委员会牌站www.coca.pgv.co查询

浙江全品认证有限公司

中国・浙江・杭州市滨江区建沿路74号1幢663室 (31005))

1.3 环境管理体系认证证书

环境管理体系认证证书

浙江喜鹊密封件有限公司

统一社会信用代码: 91330324MA2ATGAQ8W

注册地址: 浙江省温州市永嘉县瓯北街道浦一村谢宅巷9号(东至西第一间) 经营地址:浙江省温州市永嘉县瓯北街道浦一村谢宅巷9号(东至西第一间)一楼

环境管理体系符合 GB/T 24001-2016/ISO 14001:2015

位于浙江省温州市永嘉县瓯北街道浦一村谢宅巷9号(东至西第一间)一楼的 浙江喜鹊密封件有限公司有关石墨模压填料密封件的销售及相关环境管理活动

证书签发日: 2020年12月02日

证书到期日: 2023年12月01日

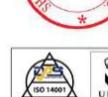
证书号: EM292012001

获证组织必须定期接受监督申核并经申核合格此证书方继续有效。

本证书信息可在国家认证认可监督管理委员会官方网站(www.cnca.gov.cn)、公司网站(www.das-china.com)上查询 监督审核通过标记:

地址: 上海市中江路 388 弄国盛中心 2 号楼 505 室 「邮桌: 200062

电话: 0086-21-62773910 传真: 0086-21-62080319


网址: http://www.das-china.com 邮箱: info@das-china.com

英国总部: DAS Certification Limited, trading name of SN Registrars (Holdings) Limited

ADD: Registration House, 22b Church Street Rushden, Northamptonshire, NN10 9YT, UK Tel: +44(0)1933 381859

Email: info@dascertification.co.uk Web: www.dascertification.co.uk Company Number: 07659067

1.4 职业健康安全管理体系认证证书

ISO45001

1909176

职业健康安全管理体系认证证书

证书编号: 20220S20543R0S

兹证明

浙江喜鹊密封件有限公司

统一社会信用代码: 91330324MA2ATGAQ8W

职业健康安全管理体系符合:

GB/T45001-2020 idt ISO45001:2018 标准

证书覆盖范围:

石墨模压填料密封件的生产和销售及相关管理活动

注册地址/审核地址: 浙江省温州市永嘉县瓯北街道浦一村谢宅巷9号(东至西第一间)

本次颁发日期: 2020 年 11 月 23 日 证书有效期至: 2023 年 11 月 22 日 首次颁发日期: 2020 年 11 月 23 日

组织必须按照规定每年接受监审,并配合监审合格通知书,注册的有效性才能延续此认证证书的有效状态信息可扫描左方二维码查询 也可登陆本认证机构网站www.qpc.org.cn查询 也可登陆中国国家认证认可监督管理委员会网站www.cnca.gov.cn查询

浙江全品认证有限公司

中国・浙江・杭州市滨江区浦沿路74号1幢603室 (310053)

5

1.5 IS015815 证书

Attestation of ISO15848-1

Certificate No.: 269665 Ref. report No. :269666

Manufacturer

: Zhejiang Magpie Sealing Element Co., Ltd.

Postal address of manufacturer: No. 9, Xiezhai Alley, Puyi Village, Oubei District, PC: 325102, Yongjia County, Wenzhou City, Zhejiang Province, P. R. China

Test Product Description:

Product Name	Graphite Packing M600
Product Description	Graphite packing/ 2 of metal-wire-reinforced braided graphite rings and 3 of die-formed graphite rings
Product type(mm×mm)	Ф25.4×Ф38.1
Cross Section Dimensions(mm×mm)	6.35×6.35
Stem diameter of test rig(mm)	25.4
Leakage Rate (mbar*l*s-1)	≤4.52×10 ⁻⁵ (Refer to BH)

Test Condition:

Testing principles are according to the reference of ISO15848-1:2015+Amd.1:2017 and manufacturer's requirements and the key test conditions have been specified according to the following information:

Test Fluid	97% minimum purity Helium		
Test Temperature(℃)	Room Temperature	400℃	
Test Pressure(bar):	51.1	34.7	
Number of Switching Cycles	205 (Refer	to CO1)	

Upon manufacturer's request., the inspector of TÜV SÜD Industry Service GmbH Shanghai Office has witnessed the fugitive emission tests.

Hereby, it is certified that the tested graphite packing of above mentioned company has been tested and the test results are accepted according to above mentioned specification. Details could be taken from the associated report with the No.:269666

Shanghai, July 16, 2019 (Place, date)

TÜV SÜD Industrie Service GmbH Westendstr. 199 80686 München Germany

Tel.: +86 21 6141-0123 Fax: +86 21 6140-8600

TÜV SÜD Industrie Service GmbH Shanghai Office Floor 3-13, No.151, Heng Tong Road, Shanghai 200070 P. R. China

1.6 API622 证书

CERTIFICATE

(Certificate of conformity with technical requirements in:) API STANDARD 622 THIRD EDITION, OCTOBER 2018

Certificate No.:267005 Rev.1 Ref. Test report No.:267004 Rev.1

Name of manufacturer

: Zhejiang Magpie Sealing Element Co., Ltd.

Postal address of manufacturer: No. 9, Xiezhai Alley, Puyi Village, Oubei District, PC: 325102,

Yongjia County, Wenzhou City, Zhejiang Province, P. R. China

1. Description of Test Valve Packing:

Graphite Packing(die-formed graphite rings and metal-wire reinforced braided graphite rings)
6.3mm*6.3mm Square and solid
5/3 die-formed graphite rings and 2 metal-wire-reinforced braided graphite rings
ф 25.5
Ф38.1

2. Test Condition:

Number of Mechanical Cycles	1510
Number of Thermal Cycles	5
Maximum Test Pressure	41.4bar
Test Profile	Rising
Test Medium	Methane 97% minimum purity
Test temperature	Room Temperature/260°C
Leakage	≤100ppm

We hereby certify that the fugitive emission test on below process valve packing have been conducted at the laboratory designated by manufacturer and witnessed by TÜV SÜD inspector according to requirements of API STANDARD 622 THIRD EDITION, OCTOBER 2018. The testing results of valve packing meet the requirements of API STANDARD 622 THIRD EDITION, OCTOBER 2018. Details could be taken from the associated report with the No.:267004 Rev.1

Shanghai, July 16, 2019

Guilin Chen TÜV SÜD Industrie Service GmbH

(mul

Westendstr. 199 80686 München Germany

TÜV SÜD Industrie Service GmbH Shanghai Office Floor 3-13, No.151, Heng Tong Road, Shanghai 200070 P. R. China Tel.: +86 21 6141-0123 Fax: + 86 21 6140-8600

Test Report No.:267004 Rev.1

Type of Process Valve Packing	Graphite Packing M600
Packing Material	Graphite Packing(die-formed graphite rings and metal-wire reinforced braided graphite rings)
Packing Cross-section(mm*mm)	6.3mm*6.3mm
Number of rings	5/3 die-formed graphite rings and 2 metal-wire-reinforced braided graphite rings
Packing Gland ID(mm)	ф 25.5
Packing Gland OD(mm)	Ф 38.1

3. Test condition

The test has been referred to API STD 622: 2018 Para.4 and the requirements of the customer. The key test conditions have been specified according to the following information:

Number of Mechanical Cycles	1510	
Number of Thermal Cycles	5	
Maximum Test Pressure	41.4bar	
Test Profile	Rising	
Test Medium	Methane 97% minimum purity	
Test temperature	Room Temperature/260 ℃	
Leakage	≤100ppm	

4. Pre-test Preparations & Packing installation

Before test, the packing installation shall be according to Par.4.3 of API STD 622: 2018.

5. Selection and Calibration of test instrument

The test instrument was chosen according to the requirements of the equipment manufacturer and calibrated according to Para. 4.2 of API STD 622; 2018.

6. Fugitive emission test and measurement

Test Segment	Static Leak Measurement (ppmv)	Stuffing Box Temperature(°C)	Flow Line Temperature(°C)	Gland Torque		Remark
Day 1	0.5	RT	RT	59	59	
Start, Ambient	8.8	RT	RT		-	
1 – 150 cycles	5.1	RT	RT			
. 100 0,000	1.9	RT	RT			-
P = 41.4bar	-					-
Elevated	2.1	260	261		***	
Temperature	4.2	260	260			
151 – 300	2.0	260	260	**		
cycles	2.1	260	260			-
P = 41.4bar	. **	***			**	5 4 8

Page 3 of 5

Test Report No.:267004 Rev.1

Test Segment	Static Leak Meas- urement (ppmv)	Stuffing Box Temperature(°C)	Flow Line Temperature(°C)	Gland		Remark
Day 2	1.2	RT	RT		-	
Start, Ambient	3.4	RT	RT			
301 – 450 cycles	1.3	RT	RT			-
100 0,000	2.3	RT	RT		-	
P = 41.4bar	**	man .	**		**	
Elevated Tempera-	6.7	260	260		**	
ture	5.1	260	260			-
451 - 600 cycles	4.4	261	260		-	
P = 41.4bar	4.6	260	260	**		-
1 - 41.40ai	-		- 44		***	**
Day 3	1.8	RT	RT			-
Start, Ambient	1.8	RT	RT	-		-
601 – 750 cycles	3.8	RT	RT			
oo i – roo cycles	4.3	RT	RT	**	144	
P = 41.4bar		***	we	**		
Elevated Tempera-	2.1	260	261	_		
ture	3.0	261	260			
751 - 900cycles	3.1	260	260			-
P = 41.4bar	2.7	260	260			
	-	***	**	**		
Day 4	2.4	RT	RT			
Start, Ambient	3.6	RT	RT			_
1050	3.1	RT	RT			-
901 – 1050 cycles	3.0	RT	RT			-
P = 41.4bar	2			-		
Elevated	3.8	260	262	-		-
Temperature	2.6	261	262	-		
1051 - 1200 cycles	5.2	260	261	-		
	4.4	260	262	-		
P = 41.4bar		***				
Day 5	2.5	RT	RT			
Start, Ambient	2.7	RT	RT			
	4.1	RT			**	
1201 – 1350 cycles	2.0	RT	RT		(4.6	**
P = 41.4bar	2,0		RT			-
Elevated		250				
Temperature -	2.3	259	261		-	-
351 – 1500 cycles	2.7	260	261			
	2.7	260	262		***	-
P = 41.4bar	2.6	260	261	**		**
	25.				**	

Page 4 of 5

Industrie Service

Test Report	No.:267004 Rev.1	
-------------	------------------	--

Test Segment	Static Leak Measurement (ppmv)	Stuffing Box Temperature(°C)	Flow Line Temperature(°C)	Gland Torque	The state of the s	Remark
Day 6	2.1	RT	RT	-		++
Start, Ambient	2.3	RT	RT	41.2	40.6	-
1501 – 1510	We	-	**			-
cycles		**			-	***
P = 41.4bar		***			**	

We, hereby declare that I have checked test valve and witnessed the fugitive emission test on the tested valve according to API STD 622:2018. The test results are as mentioned in this report.

TÜV SÜD Industrie Service GmbH

Chen Guilir

Date: July 16, 2019

Annexes

1) Fugitive emissions test report with No. ROCKB201910004;

Page 5 of 5

1.7 M641 (API622 旋转球阀填料) 证书

CERTIFICATE

(Certificate of conformity with technical requirements in:)
API STANDARD 622 THIRD EDITION, OCTOBER 2018

Certificate No.:268919 Rev.1 Ref. Test report No.:268918 Rev.1

Name of manufacturer

: Zhejiang Magpie Sealing Element Co., Ltd.

Postal address of manufacturer : No. 9, Xiezhai Alley, Puyi Village, Oubei District, PC: 325102,

Yongjia County, Wenzhou City, Zhejiang Province, P. R. China

1. Description of Test Valve Packing:

Type of Process Valve Packing	Graphite Packing M641
Packing Material	Graphite Packing(three die-formed graphite rings and two metal-wire-reinforced braided graphite rings)
Packing Cross-section(mm*mm)	6.3mm*6.3mm Square
Number of rings	5/3 die-formed graphite rings and 2 metal-wire-reinforced braided graphite rings
Packing Gland ID(mm)	ф 25.5
Packing Gland OD(mm)	φ38.1

2. Test Condition:

Number of Mechanical Cycles	1510
Number of Thermal Cycles	5
Maximum Test Pressure	41.4bar
Test Profile	Quarter-turn
Test Medium	Methane 97% minimum purity
Test temperature	Room Temperature/260°C
Leakage	≤100ppm

We hereby certify that the fugitive emission test on below process valve packing have been conducted at the laboratory designated by manufacturer and witnessed by TÜV SÜD inspector according to requirements of API STANDARD 622 THIRD EDITION, OCTOBER 2018. The testing results of valve packing meet the requirements of API STANDARD 622 THIRD EDITION, OCTOBER 2018. Details could be taken from the associated report with the No.:268918 Rev.1

Shanghai, July 16, 2019 (Place, date)

Ğuilin Chen
TÜV SÜD Industrie Service GmbH

Gnis

Westendstr. 199 80686 München Germany

TÜV SÜD Industrie Service GmbH Shanghai Office Floor 3-13, No.151, Heng Tong Road, Shanghai 200070 P. R. China Tel: +86 21 6141-0123 Fax: +86 21 6140-8600

Test Report No.:268918 Rev.1

Type of Process Valve Packing	Graphite Packing M641
Packing Material	Graphite Packing(three die-formed graphite rings and two metal-wire-reinforced braided graphite rings)
Packing Cross-section(mm*mm)	6.3mm*6.3mm Square
Number of rings	5/3 die-formed graphite rings and 2 metal-wire-reinforced braided graphite rings
Packing Gland ID(mm)	ф 25.5
Packing Gland OD(mm)	Ф38.1

3. Test condition

The test has been referred to API STD 622: 2018 Para.4 and the requirements of the customer. The key test conditions have been specified according to the following information:

Number of Mechanical Cycles	1510
Number of Thermal Cycles	5
Maximum Test Pressure	41.4bar
Test Profile	Quarter-turn
Test Medium	Methane 97% minimum purity
Test temperature	Room Temperature/260°C
Leakage	≤100ppm

4. Pre-test Preparations & Packing installation

Before test, the packing installation shall be according to Par.4.3 of API STD 622: 2018.

5. Selection and Calibration of test instrument

The test instrument was chosen according to the requirements of the equipment manufacturer and calibrated according to Para. 4.2 of API STD 622: 2018.

6. Fugitive emission test and measurement

Test Segment	Static Leak Measurement (ppmv)	Stuffing Box Temperature(°C)	Flow Line Temperature(°C)	Gland Torque	The state of the s	Remark
Day 1	3.6	RT	RT	59	59	75
Start, Ambient	6.3	RT	RT		344.1	
1 – 150 cycles	6.8	RT	RT			
	6.3	RT	RT		-	MM
P = 41.4bar			-			
Elevated	3.1	260	260			
Temperature	3.9	260	260	22	Tue I	
151 – 300	3.9	260	260	an .	(Ace	
cycles	3.8	260	260	**	ine.	
P = 41.4bar		-		-		**

Page 3 of 5

Test Report No.:268918 Rev.1

Test Segment	Static Leak Meas- urement (ppmv)	Stuffing Box Temperature(°C)	Flow Line Temperature(°C)	Gland		Remark
Day 2	8.3	RT	RT	***		
Start, Ambient	15.9	RT	RT			
301 – 450 cycles	8.2	RT	RT			
301 – 430 Cycles	5.7	RT	RT			-
P = 41.4bar						
Elevated Tempera-	3.4	260	260	**		_
ture	3.1	260	260	-		-
451 - 600 cycles	3.0	260	260	**		-
P = 41.4bar	3.0	260	260			
F - 41.40ar		***	-	Lew .		-
Day 3	7.7	RT	RT	***		
Start, Ambient	7,6	RT	RT	**	**	-
601 – 750 cycles	8.1	RT	RT			-
oo i Too cycles	8.0	RT	RT			
P = 41.4bar	**	***	-	**		
Elevated Tempera-	4.5	260	260	ine.		**
ture	4.5	260	260	**		-
751 – 900cycles	4.6	260	260		-	
P = 41.4bar	5.0	260	260	-		
	-	***				-
Day 4	11.4	RT	RT		**	-
Start, Ambient	5.5	RT	RT		**	
901 – 1050 cycles	3.5	RT	RT		**	**
501 1000 070100	3.1	RT	RT		-	**
P = 41.4bar	***	***		**		-
Elevated	3.7	260	260	and.	***	
Temperature	3.5	260	260			-
1051 – 1200 cycles	3.3	260	260	44		
P = 41.4bar	3.5	260	260			**
71.7001	-			-	**	-
Day 5	3.6	RT	RT			
Start, Ambient	3.3	RT	RT	-	-	
1201 - 1350 cycles	2.8	RT	RT	-0.0	-	-
	7.6	RT	RT	me.	188	-
P = 41.4bar			-	-		
Elevated	2.9	260	260	-		-
Temperature	3.0	260	260		-	-
1351 – 1500 cycles	3.0	260	260		**	**
P = 41.4bar	2.6	260	260			
41,40di						

Page 4 of 5

Industrie Service

Test Report	No.:268918 Rev.1
-------------	------------------

Test Segment	Static Leak Measurement (ppmv)	Stuffing Box Temperature(°C)	Flow Line Temperature(°C)	Gland Torque	4.000	Remark
Day 6	8.1	RT	RT		Man	
Start, Ambient	6.6	RT	RT	56.1	51.9	
1501 - 1510	**		-		-	20
cycles	Sales Control		-		-	-
P = 41.4bar		***		**		

We, hereby declare that I have checked test valve and witnessed the fugitive emission test on the tested valve according to API STD 622:2018. The test results are as mentioned in this report.

TÜV SÜD Industrie Service GmbH

- /--

Date: July 16, 2019

Annexes:

1) Fugitive emissions test report with No. ROCKB201903004-3.

Page 5 of 5

1.8 TA-LUFT (M600) 证书

Attestation of TA-LUFT VDI2440

Attestation No.:269669

Ref. report No. :269670

Manufacturer : Zhejiang Magpie Sealing Element Co., Ltd.

Postal address of manufacturer : No. 9, Xiezhai Alley, Puyi Village, Oubei District, PC: 325102,

Yongjia County, Wenzhou City, Zhejiang Province, P. R. China

Order Number : 7482293767

Product Description:

Product Name	Graphite Packing M600
Product Description	Graphite packing/ 2 of metal-wire-reinforced braided graphite rings and 3 of die-formed graphite rings
Product type(mm×mm)	Φ25.4×Φ38.1
Cross Section Dimensions(mm×mm)	6.35×6.35
Stem diameter of test rig(mm)	25.4

Test Condition:

Testing principles are according to Technical Instructions on Air Quality Control - TA Luft July 2002 and guideline VDI2440 November 2000 and the key test conditions have been specified

Test Fluid	97% minimum purity Helium
Test Temperature(℃)	Room Temperature/400°C
Test Pressure(bar):	51.1/34.7
No. of Switching Cycles	205
Specific Leakage Rate ¼ mbar•l/(s•m)	λ≤10-2

Hereby, It is certified that the tested valve of the above mentioned company have been tested and the test results are accepted according to above mentioned specification. Details could be taken from the associated report with the No.:269670

Shanghai, July 16, 2019

Guilin Chen TÜV SÜD Industrie Service

Westendstr. 199 80686 München Germany

TÜV SÜD Industrie Service GmbH Shanghai Office Floor 3-13, No.151, Heng Tong Road, Shanghai 200070 P. R. China

Tel.: +86 21 6141-0123 Fax: +86 21 6140-8600

1.9 低泄漏填料专利

证书号第10783730号

实用新型专利证书

实用新型名称: 低泄漏石墨组合填料环

发 明 人:谢贺义

专 利 号: ZL 2019 2 1615461.4

专利申请日: 2019年09月26日

专 利 权 人:谢贺义

址: 325105 浙江省温州市永嘉县瓯北镇浦一谢宅巷9号

授权公告日: 2020年06月19日 授权公告号: CN 210800053 U

国家知识产权局依照中华人民共和国专利法经过初步审查,决定授予专利权,颁发实用 新型专利证书并在专利登记簿上予以登记。专利权自授权公告之日起生效。专利权期限为十 年, 自申请日起算。

专利证书记载专利权登记时的法律状况。专利权的转移、质押、无效、终止、恢复和专 利权人的姓名或名称、国籍、地址变更等事项记载在专利登记簿上。

局长 申长雨

2020年06月19日

第 1 页 (共 2 页)

其他事项参见续页

证书号第10783730号

专利权人应当依照专利法及其实施细则规定缴纳年费。本专利的年费应当在每年 09 月 26 日前缴纳。未按照规定缴纳年费的,专利权自应当缴纳年费期满之日起终止。

申请日时本专利记载的申请人、发明人信息如下:申请人:

谢贺义

发明人:

谢贺义

第 2 页 (共 2 页)

1.10 可二次膨胀补充性柔性石墨填料专利证书

证书号第1905744号

发明专利证书

发 明 名 称: 可二次膨胀补充性柔性石墨填料

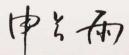
发 明 人: 谢贺义

专 利 号: ZL 2013 1 0315441.6

专利申请日: 2013年07月24日

专 利 权 人: 谢贺义

授权公告日: 2016年01月20日


本发明经过本局依照中华人民共和国专利法进行审查,决定授予专利权,颁发本证书 并在专利登记簿上予以登记。专利权自授权公告之日起生效。

本专利的专利权期限为二十年,自申请日起算。专利权人应当依照专利法及其实施细则规定缴纳年费。本专利的年费应当在每年07月24日前缴纳。未按照规定缴纳年费的,专利权自应当缴纳年费期满之日起终止。

专利证书记载专利权登记时的法律状况。专利权的转移、质押、无效、终止、恢复和 专利权人的姓名或名称、国籍、地址变更等事项记载在专利登记簿上。

局长 申长雨

第1页(共1页)

1.11 检测报告

中国认可 国际互认 检测 TESTING CNAS L11390

检测报告

Test Report

报告编号

Report No.

ROCKB201903004

产品名称 Product Name

> 委托单位 Customer

委托单位地址 Customer's Address

> 试验起始日期 Date Started

试验结束日期 Date Finished 石墨填料 M641 Graphite Packing M641

浙江喜鹊密封件有限公司 Zhejiang Magpie Sealing Elment Co.,Ltd. 浙江省温州市永嘉县原北街道浦一村谢宅巷9号 No. 9, Xiezhai Alley, Puyi Village, Oubei District, Yongjia County, Wenzhou City, Zhejiang Province

> 2019 年 3 月 13 日 March 13, 2019

2019年3月18日 March 18, 2019

温州岩石阀合检测器值有限公司 Wenzhou Rock Valve Inspection and Testing Co., Ltd.

排告编号 Report No.: ROCKB201903004

填料低泄漏试验信息 Fugitive Emissions Test Information

填料厂家 Manufacturer	浙江喜鹊密封件有限公司 Zhejiang Magpie Sealing Elment Co.,Ltd.						
填料描述 Description	石墨填料/三个模压石鉴制,两个带金属效加强石墨盘根侧 Graphite packing/ Three die-formed graphite rings. two metal-wire-reinforced braided graphite rings						
填料材料 Material	石型 Graphite	填料型号 Model No.	M641				
阀杆运动方式 Stem Motion	四分之一回转 Quarter-turn	新研发产品或现有产品 New or Current Product	新研发产品 New Product				
抽样方 Selected by	厂家 Manufacturer	送样日期 Collected Date	2020.03	.05			
样品编号 Sample No.	ROCKP202003004	样品状态 Sample status	完好 Intac				
校搁项目 Test Item	新月性能试验 Sealing Performance Test	填料测数 Number of Rings	5				
填料截面尺寸 (mm*mm) Cross Section Dimensions	6.3*6.3	填料压盖螺栓尺寸 Packing Gland Bolt Dia.	5/8**				
填料压套内径 (mm) Packing Gland ID	25.5	填料压套外径 (mm) Packing Gland OD	38.1				
安装后填料压缩量(%) Packing Compression	2574	推荐填料拧紧扭矩(N*m) Recommended Gland Tightening Torque	螺母 1 Nut 1 螺母 2 Nut 2	59			
试验依据 Test Basis	API 622-2018 第四节 Sec.4 of API 622-2018	试验介质 Test Medium	99,9% M	1,110			
机械循环总数 No. of Mechanical Cycles	1510	热循环总数 No. of Thermal Cycles	5				
最大试验压力(barg) Maximum Test Pressure	41,4	填料调整前已完成的机械循环验					
检漏仪品牌/型号/序列号 Leakage Detector Brand/ Model/ Serial Number	Thermo Fisher	Scientific / TVA-2020 / 2020	17032075				
实验室名称及地址 Test Facility		县既北镇和一工业区岩石阀门 g Lab, Heyi Industrial Zone, C Zhejiang,PRC		ia.			

填料配置 Packing Configuration:

- 方面消耗制 Square ring shape
- Kliti (F) (IIII) Die-formed middle ring.
- 全域效型強化電影響 Braided end ring with metal wire reinforcement
- 得到廣致消失型 Corrosion inhibitor and types 特勒 Zinc Powder

Page 3 / 11

图片编号 Report No.: ROCKB201903004

i代绘时段 Test Segment	静态泄漏测量 Static Leak	填料箱温度 Stuffing Box	流道温度 Flow Line Temperature (で)	填料扭矩 Gland Nut Torque (Nm)		判定
	Measurement (ppmv)	Temperature (°C.)		螺母 1 Nut 1	螺母 2 Nut 2	Evaluation
第1天Day1	3.6	RT	RT	59	59	OK
常温 Ambient	6.3	RT	RT			OK
0-150 次循环	6.8	RT	RT	- 67		OK
0-150 cycles	6.3	RT	RT	-		OK
P= 41.4 barg	-	-			-	OK
done en	3.1	260	260		-	OK.
高温 Elevated	3.9	260	260	- 19	- 24	OK
151-300 次循环	3.9	260	260	Sa.	18	OK
151-300 cycles	3.8	260	260	19		OK
P= 41.4 barg					18	OK
第 2 天 Day 2	8.3	RT	RT			OK
常温 Ambient	15.9	RT	RT	-	+	OK
301-450 次循环	8.2	RT	RT		-	OK
301-450 cycles	5.7	RT	RT	12	12	OK
P=41.4 barg	-	-	4	- 4	14	OK
第 2 天 Day 2	3.4	260	260	<u> </u>	19	OK
高温 Elevated	3.1	260	260			OK
451-600 次循环	3.0	260	260			OK
451-600 cycles	3.0	260	260			OK
P=41.4 barg	-	-		-		OK
第 3 天 Day 3	7.7	RT	RT			OK
常温 Ambient	7.6	RT	RT	-	- 12	OK
601-750 次循环	8.1	RT	RT			OK
601-750 cycles	8.0	RT	RT	19	19	OK
P=41.4 barg				1,0		OK:
第3天 Day 3	4.5	260	260	14		OK
高温 Elevated	4.5	260	260	- 1		OK
751-900 次循环	4.6	260	260			OK
751-900 cycles	5.0	260	260	12	- 12	OK
P=41.4 barg		-	7.5	- 0		OK
第4天 Day 4	11.4	RT	RT	-	:2	OK
常器 Ambient	5.5	RT	RT	-		OK
901-1050 次循环	3.5	RT	RT	-	- 12	OK
901-1050 cycles	3.1:	RT	RT	1.4		OK
P=41.4 barg				-	- 14	OK

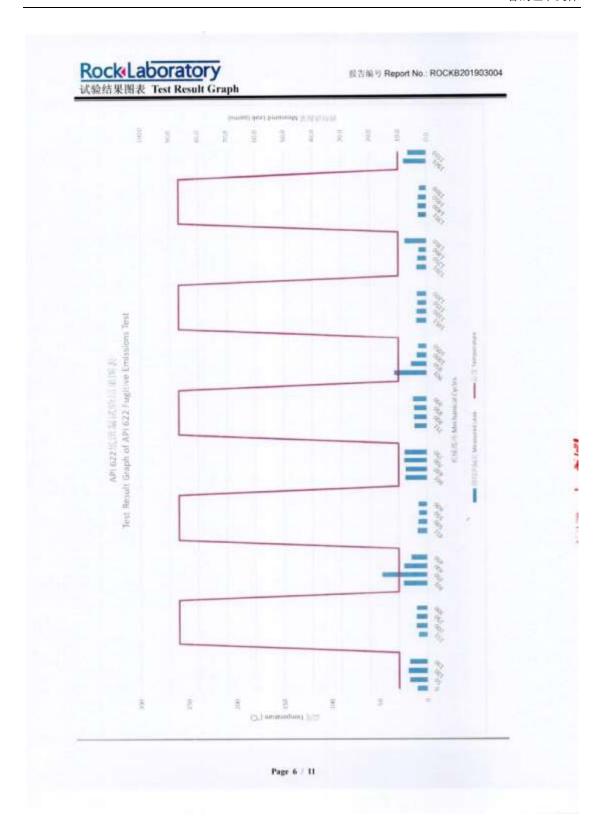
Page 4 / II

照引编号 Report No.: ROCKB201903004

试验时段 Test Segment	静态泄漏测量 Static Leak Measurement (ppmv)	填料箱温度 Stuffing Box Temperature (で)	流道温度 Flow Line Temperature (で)	項件 Gland Torque	Nut	判定 Evaluation
图 4 天 Day 4	3.7	260	260	-	-	OK
電器 Elevated	3.5	260	260	-		OK
1051-1200 次循环	3.3	260	260	18		OK
1051-1200 cycles	3.5	260	260		-	OK.
P=41.4 barg						OK.
第5天 Day 5	3.6	RT	RT			OK.
常温 Ambient 1201-1350 次循环	3.3	RT	RT	1.5	- 2	OK
	2.8	RT	RT	- 0	- 5	OK.
1201-1350 cycles	7.6	RT	RT	- %		OK
P=41.4 barg	- 34					OK.
第5天 Day 5	2.9	260	260			OK
高温 Elevated	3.0	260	260	3.5		ОК
1351-1500 次循环	3.0	260	260			OK
1351-1500 cycles	2.6	260	260		-	OK
P=41.4 barg	-	-	-		12	ОК
第 6 天 Day 6	8.1	RT	RT		12	ОК
常器 Ambient	6.6	RT	RT	56.1	51.9	ОК
1501-1510 次循环	-	-		7.4	(4	6.
1501-1510 cycles						
P=41.4 barg					- 19	

RT温度范围为15℃至40℃。

RT is between 15℃ to 40℃


试验结果Test Results:

培料港屬量是否低于允	許信? Was Packing L	eakage Below Allowable?	il this
最大允许推漏量 Maximum Allowable Leakage	100 ppmv	実測最大測額量 Maximum Leakage Detected	15.9 ppmv

Date:

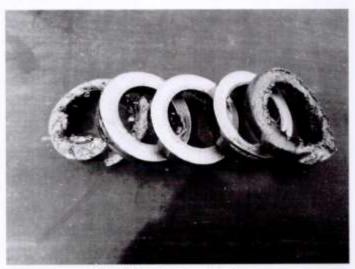
Date:

Page 5 / 11

报告编号 Report No.: ROCKB201903004

照片记录 Photographic record

试验装置 Test Rig



扭矩测量 Torque Measurement

Page 7 / 11

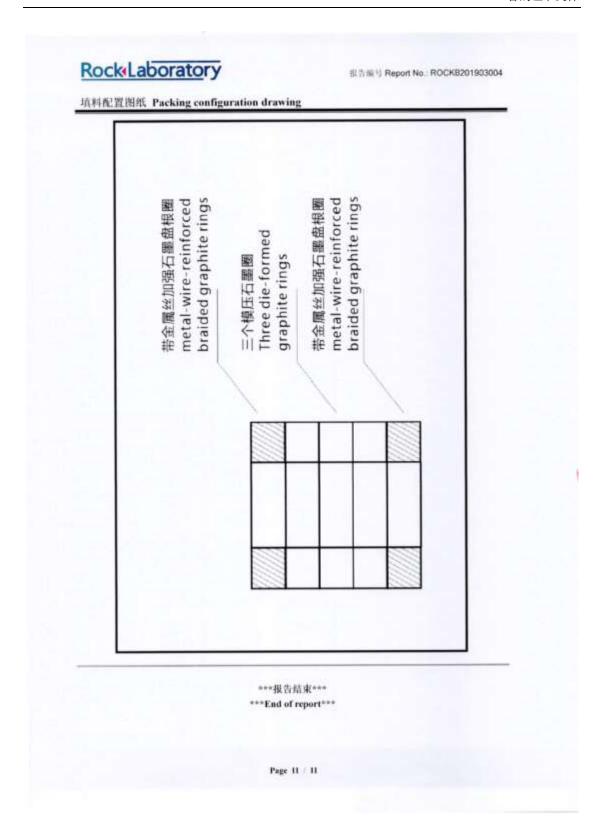
试验前的填料环 Packing rings before test

试验后的填料环 Packing rings after test

Page 8 / 11

服 7 编 号 Report No.: ROCKB201903004




试验后的填料压备 Gland follower after test

填料压盖 Gland flange

Page 9 / 1

中国认可 国际互认 检测 TESTING **CNAS L11390**

检测报告

Test Report

报告编号

Report No. ROCKB201910004

产品名称 Product Name

Graphite Packing M600

委托单位 Customer

委托单位地址 Customer's Address

浙江喜鹊密封件有限公司 Zhejiang Magpie Sealing Elment Co., Ltd. 浙江温州市永嘉县瓯北街道浦一村谢宅巷9号 No. 9, Xiezhai Alley, Puyi Village, Oubei District, Yongjia County, Wenzhou City, Zhejiang Province

石墨填料 M600

试验起始日期 Date Started

2019年12月16日 December 16, 2019

试验结束日期 Date Finished

2019年12月21日 December 21, 2019

温州岩石阀 大海 多有限公司 Wenzhou Rock Valve respection and Testing Co., Ltd.

报告编号 Report No.: ROCKB201910004

声明 Statement

 检测报告封面无公司"检测专用章"、检测报告无"检测专用章"骑缝、检测报告结论无"检测 专用章"或无审核人、批准人签字无效。

The report is invalid without "Dedicated Inspection Stamp"on report cover and cross pages and on conclusion, or without signature of reviewer and approver.

2. 报告涂改无效。

Report is invalid if altered.

 本公司仅对正式报告负责,任何形式的复印件、传真件、影印件、电子文本仅作参考之用。 任何人不得剪辑或部分复制其中的内容。

The company is only responsible for the original report. Any form of copy, fax, photocopy, electronic texts can only be regarded as reference. Editing or partial copy by any party is not allowed.

 非本公司抽样,检测报告仅对送检样品负责,委托单位对样品的代表性和相关资料的真实 性负责。

Company is not responsible for sampling, therefore the report is only responsible for submitted sample. Customer shall be responsible for the representativity of submitted sample and the authenticity of submitted documents.

- 委托单位若对检测报告有异议。应于本报告报出之日起三十日内向检测单位提出书面申请。 If customer has any objection to report, written application shall be raised by customer within 30 days after the issue of report.
- 6、本公司对不可重复性试验、异议期内不稳定样品、检测无剩余样品等不具备复检条件的委托检测任务,不进行复检。

Company doesn't have the obligation to repeat testing when testing doesn't have repeatability, or samples are not stable during objection period, or sample is used up.

 本公司承诺保护委托单位在检测业务中涉及的商业信息、技术文件和商业秘密等。妥善处 理相关资料、样品和数据。

Company promises all commercial information, technical document or trade secret related to testing shall be protected, and all documents, samples and data shall be properly handled.

通讯地址:浙江省温州市永嘉县瓯北街道和一工业区

Address: Heyi Industrial Zone, Oubei, Yongjia, Wenzhou, Zhejiang.

邮政编码 Post code: 325000

联系电话 Tel.: 0577-6708 7799

传 真 Fax: 0577-6708 7799

邮 箱 E-mail: rock@rock-lab.cn

报告编号 Report No.: ROCKB201910004

填料低泄漏试验信息 Fugitive Emissions Test Information

填料厂家 Manufacturer	浙江喜鹊密封件有限公司 Zhejiang Magpie Scaling Elment Co., Ltd.					
填料描述 Description	石墨填料/三个模压石墨圈,两个带金属丝加强石墨盘根圈 Graphite packing/ Three die-formed graphite rings, two metal-wire-reinforc braided graphite rings					
填料材料 Material	石學 Graphite	填料型号 Model No.		M6	M600	
阀杆运动方式 Stem Motion	升降 Rising	新研发产	品或现有产品 arrent Product	新研发产品 New Product		
抽样方 Selected by	厂家 Manufacturer		拌日期 cted Date	2019.12.10		
样品编号 Sample No.	ROCKP201910004		品状态 de status	100	完好 Intact	
检测项目 Test Item	密封性能试验 Sealing Performance Test	134	料圈数 r of Rings	5		
填料截面尺寸 (mm*mm) Cross Section Dimensions	6.3*6.3	填料压盖螺栓尺寸 Packing Gland Bolt Dia.		5/8"		
填料压套内径(mm) Packing Gland ID	25.5	填料压套外径 (mm) Packing Gland OD		38	1	
安装后填料压缩量(%) Packing Compression	24%	推荐填料拧紧扭矩(N•m) Recommended Gland Tightening Torque		螺母 1 Nut 1 螺母 2 Nut 2	59	
试验依据	API 622-2018 第四节	试验介质		99.9%	甲烷	
Test Basis	Sec.4 of API 622-2018	Test Medium		99.9% N	Acthane	
机械循环总数 No. of Mechanical Cycles	1510 次	77,5577	环总数 ermal Cycles	5		
最大试验压力(barg) Maximum Test Pressure	41.4	填料调整前已完成的机械 循环数 Mechanical Cycles prior to Re-adjustment		N/A		
检漏仪品牌/型号/序列号 Leakage Detector Brand/ Model/ Serial Number	Thermo Fisher So	ientific / TV	A-2020 / 20201	7032075		
实验室名称及地址 Test Facility	中国浙江省水嘉县 ROCK Valve Testing L		ustrial Zone, Ou	Chapter of Spinson		
填料配置 Packing Configura	ition		填料图纸 Pa	cking Ske	tch	
				38.1 25.4		

Page 3 / 10

报告编号 Report No.: ROCKB201910004

试验记录 Testing Data

试验时段	静态泄漏测量 Static Leak	填料箱温度 Stuffing Box	流道温度 Flow Line	Flow Line Gland Nut		判定
Test Segment	Measurement (ppmv)	Temperature (°C')	Temperature (°C)	螺母 1 Nut 1	螺母 2 Nut 2	Evaluation
第 1 天 Day 1	0.5	RT	RT	59	59	OK
常温 Ambient	8.8	RT	RT	*	*:	OK
0-150 次循环	5.1	RT	RT	54		OK
0-150 cycles	1.9	RT	RT			OK.
P= 41.4 barg			*	~	4):	2
高温 Elevated	2.1	260	261	3	- 43	OK
阿福 Elevated 151-300 次循环	4.2	260	260	-	+	OK
	2,0	260	260			OK
151-300 cycles P= 41.4 barg	2.1	260	260	-	2	ОК
r- 41.4 barg	100			-	2	
第2天 Day 2	1.2	RT	RT			ОК
常温 Ambient	3.4	RT	RT	24	2	OK
301-450 次循环	1.3	RT	RT	-		OK
301-450 cycles	2.3	RT	RT	-	- 2	ОК
P=41.4 barg	-	-		-	-	7.
第 2 天 Day 2	6.7	260	260			OK
高温 Elevated	5.1	260	260	-		OK
451-600 次循环	4.4	261	260			OK
451-600 cycles	4.6	260	260			OK
P=41.4 barg		- 07	2	-	+)	-
第3天 Day 3	1.8	RT	RT			OK
常温 Ambient	1.8	RT	RT		*3	OK
601-750 次循环	3.8	RT	RT			ОК
601-750 cycles	4.3	RT	RT		+:	OK
P=41.4 barg	-			-		
第3天 Day 3	2.1	260	261		- 8	OK
高温 Elevated	3.0	261	260	-		OK
751-900 次循环	3.1	260	260	*	-	OK
751-900 cycles	2.7	260	260	-	+	OK
P=41.4 barg	-	-			*	OK
第 4 天 Day 4	2.4	RT	RT	-	¥2	ОК
常温 Ambient	3.6	RT	RT	147.	+	ОК
901-1050 次循环	3.1	RT	RT	4	*	OK
901-1050 cycles	3.0	RT	RT	~	-	OK
P=41.4 barg		-	-	-		

Page 4 / 10

报告编号 Report No.: ROCKB201910004

试验记录 Testing Data

试验时段	静态泄漏测量 Static Leak	填料箱温度 Stuffing Box	流道温度 Flow Line	填料扭矩 Gland Nut Torque (Nm)		判定
Test Segment	Measurement (ppmv)	Temperature (°C')	Temperature (°C)	螺母 1 Nut 1	螺母 2 Nut 2	Evaluation
第1天 Day 1	0.5	RT	RT	59	59	OK
常温 Ambient	8.8	RT	RT	*	*1	OK
0-150 次循环	5.1	RT	RT	54		OK
0-150 cycles	1.9	RT	RT	-2	- 0	OK.
P= 41.4 barg	(*)	-	#	- Sa	+):	*
Stratt and	2.1	260	261	4	- 2	OK
高温 Elevated	4.2	260	260	12	41	OK
151-300 次循环	2.0	260	260			OK
151-300 cycles P= 41.4 barg	2.1	260	260	-	2	ОК
r= 41.4 barg	1/2			9/	2.	**
第2天 Day 2	1.2	RT	RT			ОК
常温 Ambient	3.4	RT	RT	2	2	OK
301-450 次循环	1.3	RT	RT	-		OK
301-450 cycles	2.3	RT	RT	-	- 2	OK
P=41.4 barg	-	-	-	-	-	7:
第 2 天 Day 2	6.7	260	260			OK
高温 Elevated	5.1	260	260			OK
451-600 次循环	4.4	261	260			OK
451-600 cycles	4.6	260	260			OK
P=41.4 barg		- 27	2	-	+)	-
第3天 Day 3	1.8	RT	RT			OK
常温 Ambient	1.8	RT	RT		- 80	OK
601-750 次循环	3.8	RT	RT			ОК
601-750 cycles	4.3	RT	RT		*>	OK
P=41.4 barg	-	13.				
第3天 Day 3	2.1	260	261			OK
高温 Elevated	3.0	261	260	- 4	*	OK
751-900 次循环	3.1	260	260	-		OK
751-900 cycles	2.7	260	260	-	+:	OK
P=41.4 barg		1.5			*	OK
第4天 Day 4	2.4	RT	RT	-		ОК
常温 Ambient	3.6	RT	RT	140	47	ОК
901-1050 次循环	3.1	RT	RT	-	+1	OK
901-1050 cycles	3,0	RT	RT	~	-	OK
P=41.4 barg		-	-	-	-8	-

Page 4 / 10

报告编号 Report No.: ROCKB201910004

试验时段 Test Segment	静态泄漏测量 Static Leak Measurement (ppmv)	填料箱温度 Stuffing Box Temperature (°C')	流道温度 Flow Line Temperature (℃)	填料 Gland Torque	1 Nut	判定 Evaluation
第4天 Day 4	3.8	260	262	-	- 2	OK
高温 Elevated	2.6	261	262			OK
1051-1200 次循环	5.2	260	261	-		OK
1051-1200 cycles	4.4	260	262			OK
P=41.4 barg		1.5		**		
第5天 Day 5	2.5	RT	RT			OK
常温 Ambient	2.7	RT	RT	(8)	*	OK
1201-1350 次循环	4.1	RT	RT			ОК
1201-1350 cycles	2.0	RT	RT		.5	OK
P=41.4 barg				-		*
第5天 Day 5	2.3	259	261			OK
高温 Elevated	2.7	260	261			OK
1351-1500 次循环	2.7	260	262		-	OK
1351-1500 cycles	2.6	260	261	-	*	OK
P=41.4 barg	2				-	
第6天 Day 6	2.1	RT	RT	-		OK
常温 Ambient	2.3	RT	RT	41.2	40.6	OK
1501-1510 次循环 1501-1510 cycles P=41.4 barg	-	- 4	-			4
			38	-		4
	2	Tail .		- 2:		-

备注 Note:

RT 温度范围为 15℃至 40℃。

RT is between 15℃ to 40℃

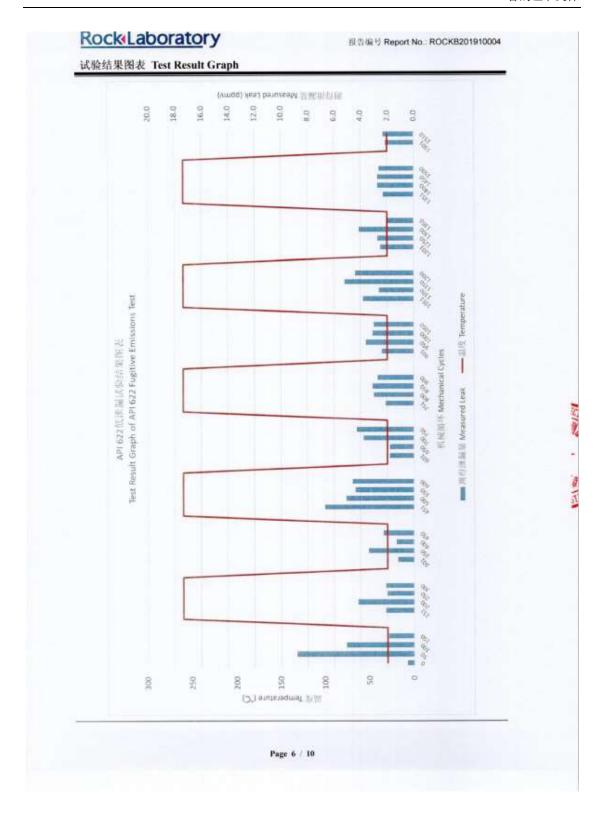
试验结果Test Results:

最大允许泄漏量		实测最大泄漏量
Maximum Allowable	100 ppmv	Maximum Leakage
Leakage		Detected

填料泄漏量是否低于允许值? Was Packing Leakage Below Allowable?

编制: 上本mpa

日期: Jong And


単核: 古月37 Reviewed by:

日期: 2019,12.23

Approved by:

日期: Date:

Page 5 / 10

报告编号 Report No.: ROCKB201910004

照片记录 Photographic record

试验装置 Test Rig

设备校准Equipment calibration

Page 7 / 10

报告编号 Report No.: ROCKB201910004

扭矩测量 Torque Measurement

试验前的填料环 Packing rings before test

Page 8 / 16

报告编号 Report No.: ROCKB201910004

试验后的填料环 Packing rings after test

试验后的填料压套 Gland follower after test

Page 9 / 10

RockLaboratory 报告编号 Report No.: ROCKB201910004 试验后的阀杆 Stem after test 填料函内孔 Stuffing box internal ***报告结束*** ***End of report*** Page 10 / 10

1 其他证明文件

1.1 协会会员证

1.2 业绩证明文件

业绩证明

致: 中国石油化工股份有限公司南京阀门供应储备中心

兹证明<u>浙江喜鹊密封件有限公司</u>为我公司合格密封件供应商, 近五年未出现质量问题,我公司向中石化供应的阀门使用的该公司 密封件业绩情况如下。

特此证明!

时 何	向中石化供应阀门数量	其中石泉美丽斯门城门经集(历太)	使用 密封件数量	東月 旧社会会報(万元)
2015年				
2016年				
2017年				
2018年				
2019年	20000	10000	13818	19. 3986
合计			13818	19. 3986

业绩证明

致: 中国石油化工股份有限公司南京阀门供应储备中心

兹证明<u>浙江喜鹊密封件有限公司</u>为我公司合格密封件供应商, 近五年未出现质量问题,我公司向中石化供应的阀门使用的该公司 密封件业绩情况如下。

特此证明!

				Contract of the Contract of th
时间	向中石化供应阀门数量	自中石化供应阀门阀门金额(万元)	使用 紧握件数量	使用 紧握件全额 (万元)
2015年	The state of the control of the state of the	171		1
2016年				
2017年				
2018年				
2019年	8000	6000	12580	10.0802
合 计			12580	10. 0802

业绩证明

致: 中国石油化工股份有限公司南京阀门供应储备中心

兹证明<u>浙江喜鹊密封件有限公司</u>为我公司合格密封件供应 商,近五年未出现质量问题,我公司向中石化供应的阀门使用的该 公司密封件业绩情况如下。

特此证明!

时 间	向中石化供应阀门数量	自中石化供应河门闽门金額(万元)	使用密封件数量	使用密封件全额 (万元)
2015年	大于6000	3650	1480	28. 90
2016年	大于6000	4270	1850	52. 57
2017年	大于7000	4550	2740	43, 36
2018年	大于8000	6380	4490	49.77
2019年	大于10000	8000	4860	55. 15
合计		26850	15420	229. 75